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Abstract
In this paper, we investigate the use of modern parallel computer technology to obtain

high-precision numerical values for ordinary and iterated integrals. Such numerical values
can be used to experimentally find analytic values. In a previous paper, three schemes
were described for high-precision one-dimensional integration. Two of these three were
able to evaluate 14 difficult test problems, including problems with vertical derivatives,
blow-up singularities and infinite intervals, to 1000-digit accuracy.

This paper describes the implementation of one of these schemes on a highly parallel
computer system. On 1024 processors our program achieves a speedup of 807 times, yet
on each problem produces results to nearly 2000-digit accuracy. This paper also discusses
two-dimensional numerical integration, which is much more expensive because many more
function evaluations must be performed. Nonetheless, on a test suite of eight rigorous
two-dimensional problems, our programs achieve nearly 100-digit accuracy, with a parallel
speedup of 627 times on 1024 processors.
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1. Introduction
The high-precision evaluation of numerical integrals is emerging as a useful tool for

experimental mathematics. In many cases, the numerical value, if computed to sufficiently
high precision and combined with integer relation detection schemes such as PSLQ [4], can
be used to discover the analytic evaluation (i.e., a closed-form formula) for the integral.
The precision required in these computations is typically 100-digit accuracy or so, but
often multi-hundred or even multi-thousand-digit accuracy is required in order for the
integer relation detection schemes to obtain a numerically meaningful result.

As one example, recently one of the present authors, together with Jonathan Borwein
and Greg Fee of Simon Fraser University in Canada, were inspired by a recent problem in
the American Mathematical Monthly [1]. They found by using an earlier single-processor
version of the quadrature scheme described in this paper, together with a PSLQ integer
relation detection program, that if C(a) is defined by

C(a) =
∫ 1

0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

,

then

C(0) = π log 2/8 + G/2

C(1) = π/4− π
√

2/2 + 3
√

2 arctan(
√

2)/2

C(
√

2) = 5π2/96.

Here G =
∑

k≥0(−1)k/(2k + 1)2 is Catalan’s constant. These experimental results then
led to the following general result, rigorously established, among others:∫ ∞

0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

=
π

2
√

a2 − 1

[
2 arctan(

√
a2 − 1)− arctan(

√
a4 − 1)

]
.

As a second example, recently Jonathan Borwein and one of the present authors
empirically determined that

2√
3

∫ 1

0

log6(x) arctan[x
√

3/(x− 2)]

x + 1
dx =

1

81648
[−229635L3(8)

+29852550L3(7) log 3− 1632960L3(6)π
2 + 27760320L3(5)ζ(3)

−275184L3(4)π4 + 36288000L3(3)ζ(5)− 30008L3(2)π
6

−57030120L3(1)ζ(7)] ,

where L3(s) =
∑∞

n=1 [1/(3n− 2)s − 1/(3n− 1)s]. Based on these experimental results,
general results of this type have been conjectured but not yet rigorously established.

The above examples are ordinary one-dimensional integrals. Two-dimensional inte-
grals are also of interest. Along this line, recently Jonathan Borwein and one of the
present authors determined that
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2

3

∫ 1

0

∫ 1

0

√
x2 + y2 dx dy +

1

3

∫ 1

0

∫ 1

0

√
1 + (u− v)2 du dv

=
1

9

√
2 +

5

9
log(

√
2 + 1) +

2

9
.

See [3] for further details and some additional examples.

2. The Tanh-Sinh Quadrature Algorithm
In a previous paper [6], one of the present authors and his co-authors described three

high-precision one-dimensional quadrature schemes, and exhibited results for computer
runs with 400-digit and to 1000-digit precision. The three schemes were: (1) Gaussian
quadrature, (2) error function quadrature, and (3) tanh-sinh quadrature. The authors
concluded that of these three schemes, the tanh-sinh scheme holds the best promise for
very high-precision usage. It features an initialization procedure that is fundamentally
faster than the other two schemes, the ability to obtain fully accurate results even for
many integrand functions with vertical derivatives or blow-up singularities at endpoints
and generally very fast run times.

Both the tanh-sinh scheme and the error function scheme are based on the Euler-
Maclaurin summation formula, which implies that for certain bell-shaped integrands, a
simple block-function approximation to the integral is remarkably accurate, much more
so that one would normally expect [2, pg. 180]. This principle is utilized by transforming
an integral of some function f(x) on the interval [−1, 1] to an integral on (−∞,∞) using
the change of variable x = g(t). Here g(x) is some monotonic, infinitely differentiable
function with the property that g(x) → 1 as x → ∞ and g(x) → −1 as x → −∞, and
also with the property that g′(x) and all higher derivatives rapidly approach zero for large
positive and negative arguments. In this case one can write, for h > 0,∫ 1

−1
f(x) dx =

∫ ∞

−∞
f(g(t))g′(t) dt = h

∞∑
j=−∞

wjf(xj) + E(h),

where xj = g(hj) and wj = g′(hj). If g′(t) and its derivatives tend to zero sufficiently
rapidly for large t, positive and negative, then even in cases where f(x) has a vertical
derivative or an integrable singularity at one or both endpoints, the resulting integrand
f(g(t))g′(t) will be a smooth bell-shaped function for which the Euler-Maclaurin argument
applies. In these cases, the Euler-Maclaurin formula implies that the error E(h) in this
approximation decreases faster than any power of h. Indeed, as we shall see, tanh-sinh
quadrature often achieves quadratic convergence, namely a doubling of the number of
correct digits in the result when the interval h is reduced by half.

The tanh-sinh scheme uses g(t) = tanh(π/2 · sinh t). It approximates the integral of
f(t) on [−1, 1] by the sum

∑N
j=−N wjf(xj), where the abscissas are given by xj = g(hj)

and the weights are given by wj = g′(hj). In our implementation, the parameter h is set to
2−k, where k is the “level” of the quadrature calculation. Successively larger levels reduce
h in half, double the number of abscissa-weight pairs (and thus double the number of
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function evaluations required in a quadrature calculation), but also approximately double
the number of correct digits in the result, in many cases, as mentioned above. In our
implementation, the parameter N is chosen large enough so that wj < ε2 for all j > N ,
where ε2 = ε2

1, ε1 = 10−p1 , and p1 is the primary precision target accuracy (2000 digits in
this case). These extra-small weights, much smaller than the primary epsilon, permit one
to obtain accurate results for many functions with blow-up singularities at endpoints. The
abscissa-weight pairs are pre-computed and stored for multiple integration calculations.
Full details are given in [6].

The tanh-sinh integration scheme was first introduced by Takahasi and Mori [10].

3. High-Precision Arithmetic
The Arbitrary Precision (ARPREC) computation library was used to perform the re-

quired high-precision arithmetic computations described in this paper [5]. This software
library is written in C++, but it includes both C++ and Fortran-90 translation modules,
so that existing C++ and Fortran-90 application programs can utilize this library by
making only very minor changes to the source code. In most cases, it is only necessary to
change type statements and input/output statements of the variables that one wishes to
be treated as arbitrary precision, and all other operations are automatically performed by
the library. One fortunate feature of high-precision numerical quadrature, as described in
this paper, is that all individual high-precision arithmetic operations and transcendental
function evaluations can be performed locally on a single processor. Thus it is not neces-
sary to invoke parallel processing within the ARPREC library itself for the test problems
considered below.

4. 1-D Parallel Implementation
Among its virtues, the tanh-sinh quadrature scheme is well suited for implementation

on a highly parallel computer system. This is because both the initialization procedure
(the generation of abscissa-weight pairs) and the evaluation of the integrand function at
these abscissas are inherently parallel operations—each instance theoretically can be done
independently, although there are numerous details that must be observed to avoid serious
reductions in parallel performance.

Parallel processing was invoked in the computations described below using the Message
Passing Interface (MPI) library [7]. Calls to the MPI library were used for synchronization,
collection of distributed data to a single processor, and the broadcast of data residing on
a single processor to all other processors. The parallel system we used is organized into
16-processor shared memory nodes, but no attempt was made to exploit shared-memory
parallelism—instead each node contained 16 tasks of our MPI program.

One straightforward way to perform the tanh-sinh scheme in parallel is as follows: (1)
on each processor, zero out an array of arbitrary precision values that is large enough
to hold all anticipated abscissa-weight pairs; (2) distribute the computation of abscissa-
weight pairs using a cyclic scheme, where the abscissa-weight pair indexed j, namely
(xj, wj), is assigned to and computed on processor p = j mod n, where n is the number of
processors; (3) combine the abscissa-weight arrays on individual processors into a single
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array that has all contributions, by means of a global, element-wise high-precision sum
reduction operation, which is then broadcast to all processors; (4) perform the function
evaluations, using some scheme (such as a cyclic scheme) to evenly distribute the work-
load among processors; (5) sum the function-weight products on individual processors
to a single high-precision value, then send these to one processor, where they are added
together, with the final sum broadcast to all processors. This scheme appears to achieve
good scalability up to about 100 processors.

It is possible to achieve even higher scalability by modifying the above scheme as
follows: (1) calculate, in parallel, the abscissa-weight pairs, but do not distribute any
of the pairs calculated on an individual processor to any other processor; (2) during the
quadrature calculation, perform on an individual processor only those function evaluations
associated with its particular set of abscissa-weight pairs.

One difficulty with this second approach derives from the fact, as we shall see in
the problems studied below, that different integration problems require different numbers
of abscissa-weight pairs to achieve a given accuracy level. Even among the problems
described in the next section, some achieve full 2000-digit accuracy with only 9 levels of
abscissa-weight pairs (corresponding to h = 2−9), while others require 13 levels of abscissa-
weight pairs (corresponding to h = 2−13), or in other words 16 times as many pairs and
thus 16 times as many function evaluations. Using all 13 levels for all problems is clearly
rather wasteful. Note that if one has computed 13 levels of abscissa-weight pairs, one can
compute with only nine levels, for instance, by accessing the abscissa-weight array with
a stride of 16.

Unfortunately, if a straightforward cyclic scheme is used to assign the abscissa-weight
pairs to processors, a power-of-two number of processors is used (the most common and
convenient case in parallel computing), and the abscissa-weight array is accessed with
a power-of-two stride, as mentioned in the paragraph above, then a catastrophic load
imbalance ensues—some processors have a large fraction of the pairs (and corresponding
function evaluations), while other processors have none at all.

It turns out not to be easy to find an efficient assignment scheme for this application.
Several popular “hashing” schemes from the computer science literature were found to
be ineffective. Even a “random” scheme, or in other words a scheme that employs a
good pseudo-random number generator, gives rather disappointing results. Table 1 gives
the results of some tests of five different assignment schemes, among numerous ones that
we tried. In these tests, 70,000 indices (the approximate number of abscissa-weight pairs
actually generated in the quadrature computations described in the Sections 5 and 6) were
assigned to processors according to the five schemes. The smallest and largest number of
indices assigned to any processor by a given scheme, for various processor numbers and
strides, are then shown in the table. The more nearly equal these max and min figures
are, the better the assignment scheme. The five assignment schemes are:

1. CYC, a cyclic scheme: p = mod(j, n)

2. BC1, a block-cyclic scheme: p = mod(bj/16c, n)

5



CYC BC1 BC2 MCBC RAND
Proc. Stride Min Max Min Max Min Max Min Max Min Max

4 1 17500 17500 17489 17504 17493 17509 17499 17501 117426 17578
4 2 0 17500 8744 8752 8232 9267 8748 8752 8655 8828
4 4 0 17500 4372 4376 4116 5148 4372 4376 4355 4397
4 8 0 8750 2186 2188 2058 2574 2186 2188 2166 2233
4 16 0 4375 1093 1094 1029 1287 1093 1094 1047 1148

16 1 4375 4375 4368 4384 4369 4386 4374 4376 4267 4505
16 2 0 4375 2184 2192 2056 2322 2187 2188 2133 2247
16 4 0 4375 1092 1096 1028 1290 1093 1094 1037 1135
16 8 0 4375 546 548 514 774 546 547 500 596
16 16 0 4375 273 274 257 516 273 274 246 305
64 1 1093 1094 1088 1104 1088 1105 1093 1095 1022 1169
64 2 0 1094 544 552 512 585 545 548 505 600
64 4 0 1094 272 276 256 325 272 276 242 315
64 8 0 1094 136 138 128 195 136 138 112 176
64 16 0 1094 68 69 64 130 68 69 48 87

256 1 273 274 272 288 272 289 272 274 234 320
256 2 0 274 136 144 128 153 136 137 106 168
256 4 0 274 68 72 64 85 68 69 45 93
256 8 0 274 34 36 32 51 34 35 17 51
256 16 0 274 17 18 16 34 17 18 6 29

1024 1 68 69 64 80 68 85 67 69 42 97
1024 2 0 69 32 40 32 45 32 36 16 54
1024 4 0 69 16 20 16 25 16 20 6 30
1024 8 0 69 8 10 8 15 8 10 0 19
1024 16 0 69 4 5 4 10 4 5 0 12

Table 1: Min/max processor counts for five assignment functions (70,000 indices)

3. BC2, a block-cyclic scheme: p = mod(bj/17c, n)

4. MCBC, a mixed cyclic, block-cyclic scheme: p = mod(j + bj/16c, n)

5. RAND, a pseudo-random scheme: p = bzjnc, where zj is a uniform generator on
(0, 1).

In the above, “mod” is used to mean the function that returns the remainder when the
first argument is divided by the second argument.

It can be seen from the results in Table 1 that of the five schemes mentioned, the one
we have named the mixed cyclic, block-cyclic scheme (MCBC) is the best. It provides a
virtually perfect load balance across a large range of processors (up to 1024) and strides
(up to stride 16). This is the scheme that was used in the computations described below.

5. 1-D Test Problems
The following 14 integrals are taken from the suite used in the earlier paper [6]. They

are typical of the integrals that have been encountered in experimental math research,
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except that in each of these cases an analytic result is known, as shown below, facilitating
the checking of results:

• 1–4: Continuous functions on finite intervals.

• 5–6: Continuous functions on finite intervals, but with a vertical derivative at an
endpoint.

• 7–10: Functions on finite intervals with an integrable singularity at an endpoint.

• 11–13: Functions on an infinite interval.

• 14: An oscillatory function on an infinite interval.

1 :
∫ 1

0
t log(1 + t) dt = 1/4

2 :
∫ 1

0
t2 arctan t dt = (π − 2 + 2 log 2)/12

3 :
∫ π/2

0
et cos t dt = (eπ/2 − 1)/2

4 :
∫ 1

0

arctan(
√

2 + t2)

(1 + t2)
√

2 + t2
dt = 5π2/96

5 :
∫ 1

0

√
t log t dt = −4/9

6 :
∫ 1

0

√
1− t2 dt = π/4

7 :
∫ 1

0

√
t√

1− t2
dt = 2

√
πΓ(3/4)/Γ(1/4)

8 :
∫ 1

0
log t2 dt = 2

9 :
∫ π/2

0
log(cos t) dt = −π log(2)/2

10 :
∫ π/2

0

√
tan t dt = π

√
2/2

11 :
∫ ∞

0

1

1 + t2
dt = π/2

12 :
∫ ∞

0

e−t

√
t

dt =
√

π

13 :
∫ ∞

0
e−t2/2 dt =

√
π/2

14 :
∫ ∞

0
e−t cos t dt = 1/2

Note that the integrals on an infinite interval, which in each case here is [0,∞), can be
transformed to integrals on a finite integral, which is required for tanh-sinh quadrature,
by the transformation s = 1/(t + 1).
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Problem Levels Processors
Number Required 1 4 16 64 256 1024

Init 22462.17 5668.95 1439.76 360.53 92.79 25.92
1 10 1952.09 499.64 125.95 31.98 8.34 3.19
2 10 5575.73 1433.29 363.06 92.46 24.65 7.85
3 10 2865.02 732.78 186.25 46.51 12.46 4.00
4 10 6220.04 1596.34 403.42 103.33 27.26 8.43
5 9 986.87 254.09 64.00 16.48 4.58 1.42
6 10 105.40 27.21 6.85 1.75 0.48 0.26
7 10 223.78 58.06 14.40 3.76 0.95 0.33
8 9 975.23 249.93 63.94 16.42 4.56 1.42
9 10 3078.12 790.60 201.44 51.32 13.28 4.03

10 10 1377.10 361.05 91.28 23.65 6.09 1.97
11 11 91.37 23.45 6.00 1.55 0.42 0.24
12 12 3305.49 838.17 211.60 53.53 13.82 4.21
13 13 4469.49 1136.02 284.50 71.78 18.55 5.00
14 13 13960.36 3595.45 907.79 231.07 59.12 15.50

Total 67648.26 17265.03 4370.24 1106.12 287.35 83.77
Ratio 1.00 3.92 15.48 61.16 235.42 807.55

Table 2: Parallel run times and speedup ratios for 1-D problems

6. 1-D Performance Results
The results of the 1-D parallel quadrature tests are given in Table 2. The first line

gives the run time, in seconds, for the initialization process. The initialization time is
listed here separately from the integral evaluations, since it is expected that in many
practical applications, the abscissas and weights will be computed once and then stored
for numerous subsequent evaluations. In all tests, the full target accuracy of 10−2000 was
achieved, except in Problem 14, where the accuracy was 10−1972. This lower accuracy was
not due to any difficulty of implementation, but, as it turns out, this is the best that can
be achieved with 13 levels of abscissas and weights (i.e., with h = 2−13, which requires
approximately 71,000 abscissa-weight pairs) on this particular problem. When 14 levels
(or 13 levels with a slightly smaller initial h) are used, the error is reduced to less than
10−2000, although the run time approximately is correspondingly higher.

These runs were made on the “Seaborg” system, an IBM Power3 parallel supercom-
puter at the Lawrence Berkeley Laboratory, except that the one-processor and four-
processor results were performed on “Hockney,” a smaller system that has the same
processor design and clock rate. The parallel program performs all functions of the sin-
gle processor code, including the calculation of an estimated error in the result [6]. The
one-processor figures shown in Table 2 are based on an efficient single-processor version
of this program, with no calls to the MPI parallel library or other modifications for par-
allel computing. Thus the speedup ratios shown in the table are true comparisons to
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single-processor performance.
It is evident from these results that the parallel quadrature program is achieving very

nearly perfect speedup up to several hundred processors. This ratio drops a bit from ideal
at 1024 processors, but it is clear from examining these timings (especially for Problems 5
through 11) that this is due in part to the fact that when these problems are divided into
1024 pieces, there is not a lot for each processor to do. Also, in a parallel implementation, a
few more evaluations of the function must be performed in a highly parallel environment
than on a single-processor system, because it is more difficult to determine when the
function-weight products are sufficiently small that the summation may be terminated.

7. Two-Dimensional Quadrature
The tanh-sinh scheme described above can be generalized to two or more dimensions.

In particular, a 2-D iterated integral can be approximated as follows:∫ 1

−1

∫ 1

−1
f(x, y) dx dy =

∫ ∞

−∞

∫ ∞

−∞
f(g(s), g(t))g′(s)g′(t) ds dt

= h
∞∑

k=−∞

∞∑
j=−∞

wjwkf(xj, xk) + E(h),

where g(t) = tanh(π/2 · sinh(t)) as in the 1-D case, and where xj and wj are the 1-D
abscissas and weights. This same approach can easily be extended to numerically evaluate
more general integrals of the form∫ b

a

∫ d(y)

c(y)
f(x, y) dx dy.

As before, the Euler-Maclaurin formula asserts that for a certain class of functions
f(x, y), including many with vertical derivatives and blow-up singularities at the bound-
aries of the rectangle, the error E(h) in the above approximation goes to zero faster than
any power of h. As a result, 2-D tanh-sinh quadrature, like the 1-D version, often achieves
quadratic convergence, wherein each additional level of abscissa-weight pairs yields twice
as many correct digits in the result.

However, 2-D quadrature inherently is much more expensive than 1-D quadrature,
because the number of function evaluations in a 2-D array, assuming the same overall
spacing, is many times larger than in a 1-D problem. Millions of function evaluations
may be required to obtain, say, 100-digit accuracy in the result. Also, we have found that
2-D tanh-sinh scheme is more sensitive to anomalies such as non-differentiable or blow-
up singularities at boundaries. In such cases, we have found that each additional level
typically yields only about 1.4 times as many correct digits, whereas in 1-D quadrature,
problems with similar anomalies typically exhibit quadratic convergence (each additional
level approximately doubles the number of correct digits). What’s more, in 2-D quadra-
ture, each additional level quadruples the computational cost instead of merely doubling
the cost, since four times as many function evaluations are required.

Higher-order variants of the Euler-Maclaurin, and their implication for quadrature,
are discussed in [9].
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8. Implementation of 2-D Quadrature
Our serial implementation of a 2-D tanh-sinh scheme is a reasonably straightforward

extension of our 1-D program, although the handling of error estimates must be done
quite carefully. On the bright side, in 2-D tanh-sinh quadrature the initial computation
of abscissas and weights is a trivial matter, in comparison with the millions of functions
evaluations that are required, and so does not dominate the computation as it does in the
1-D case.

Our parallel implementation of the 2-D scheme again relies crucially on a carefully
chosen scheme for allocating processors to the abscissa array for function evaluations.
Our program assigns a batch of 16 consecutively numbered processors to each column,
and then assigns the function evaluations in this column among these 16 processors. In
this way, the program exploits available parallelism in both dimensions. The particular
assignment scheme used by the program is as follows: the 16 processors p that satisfy
bp/16c = mod (j+j/16, n/16) are assigned to column j of the 2-d array of abscissas. Then
within column j, location (i, j) is assigned to the processor p that satisfies mod(p, 16) =
mod(i + i/16, 16). Note that both rows and columns employ a mixed cyclic, block-cyclic
scheme, which provides an even load balance for function evaluations, yet avoids difficulties
with power-of-two strides.

9. 2-D Test Problems
We tested our serial and parallel implementations of this 2-D tanh-sinh quadrature

scheme on a suite of eight test problems. As before, this set includes some rather difficult
examples, including one problem with a non-differentiable point at a boundary (Problem
1), two problems with a blow-up singularity at a boundary (Problems 4 and 6), two
problems where the inner integral boundary is not merely an interval but instead bounded
by two functions (Problems 7 and 8), and one problem on an infinite interval (Problem
5).

1 :
∫ 1

0

∫ 1

0

√
s2 + t2 ds dt =

√
2/3− log(2)/6 + log(2 +

√
2)/3

2 :
∫ 1

0

∫ 1

0

√
1 + (s− t)2 ds dt = −

√
2/3− log(

√
2− 1)/2 + log(

√
2 + 1)/2 + 2/3

3 :
∫ 1

−1

∫ 1

−1
(1 + s2 + t2)−1/2 ds dt = 4 log(2 +

√
3)− 2π/3

4 :
∫ π

0

∫ π

0
log[2− cos s− cos t] ds dt = 4πG− π2 log 2

5 :
∫ ∞

0

∫ ∞

0

√
s2 + st + t2 e−s−t ds dt = 1 + 3/4 · log 3

6 :
∫ 1

0

∫ 1

0
(s + t)−1[(1− s)(1− t)]−1/2 ds dt = 4G

7 :
∫ 1

0

∫ t

0
(1 + s2 + t2)−1/2 ds dt = −π/12− 1/2 · log 2 + log(1 +

√
3)

8 :
∫ π

0

∫ t

0
(cos s sin t)e−s−t ds dt = 1/4 · (1 + e−π)
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Problem Levels Processors
Number Required 1 16 64 256 1024

1 9 4854.89 384.60 98.76 25.53 10.51
2 6 72.56 5.96 1.70 0.97 2.43
3 7 328.90 26.21 6.91 2.36 3.17
4 9 60475.50 4826.64 1228.59 307.82 82.08
5 9 8973.73 696.87 177.61 45.26 14.93
6 9 6448.27 495.78 127.50 32.78 11.60
7 6 91.13 7.34 2.04 1.04 2.45
8 6 449.40 36.10 9.66 3.08 3.13

Total 81694.38 6479.50 1652.77 418.84 130.30
Ratio 1.00 12.61 49.43 195.05 626.97

Table 3: Parallel run times and speedup ratios for 2-D problems

Because of the much higher computational cost of 2-D quadrature, due to the much
larger number of function evaluations required, we set a more modest goal of 100-digit
accuracy in these problems. We employed 120-digit working precision.

10. 2-D Performance Results
Performance results for the 2-D quadrature program are shown in Table 2. In each

problem we achieved over 100-digit accuracy, except for Problems 4 and 6, where the
errors were 10−86 and 10−80, respectively. No results are shown in this table for four
processors, since the parallel program assumes a minimum of 16 processors.

It is clear from these results that, unlike the 1-D case, there is a large difference
in run times between well-behaved integrands and those with singularities at a corner or
boundary. Those without such anomalies can be evaluated to over 100-digit accuracy with
just six levels, requiring only a few minutes run time. For those problems that do exhibit
such anomalies, nine levels are needed, requiring many more function evaluations. Indeed,
for Problems 4 and 6, even nine levels of abscissa-weight pairs (and the corresponding 2-D
mesh of function evaluations) evidently were not sufficient—it appears that one additional
level would be required in each case to achieve over 100 digit accuracy, which would
multiply the run times by a factor of four.

The parallel speedups for 2-D quadrature are not as high as for 1-D quadrature, in part
because the handling of error estimation is more complicated than in the 1-D case. Also,
much of this reduction in scalability was rooted in the shorter-running problems, whose
modest computational work evidently cannot be as efficiently distributed among 1024
processors. The speedup factors for problems with nine levels are significantly higher.
Note, for instance, that the parallel speedup for Problem 4, the longest running problem,
is 737, and for Problems 4, 5 and 6 together is 699.

The speedup figures shown in Table 2 are for a program strategy that employs parallel
decomposition in both row and column dimensions, as described in Section 8. We also

11



tried a scheme that only distributed the columns of the 2-D array of abscissas to be
evaluated. This scheme has some advantages, including a greater flexibility for modest
levels of parallelism. But it is less effective at the high end, achieving only 508 times
speedup for 1024 processors.

11. Conclusions
We have demonstrated serial and parallel implementations of 1-D and 2-D tanh-sinh

quadrature schemes. These programs were evaluated using two suites of challenging test
problems, including problems with nondifferentiable and blow-up singularities on the
boundaries, oscillatory behavior, and problems on infinite intervals. The 1-D program
evaluated each of the the 1-D test problems to nearly 2,000-digit precision; the 2-D pro-
gram evaluated each of the the 2-D test problems to nearly 100-digit precision. The
serial programs required 18 and 22 hours, respectively to complete the test suites, but
these times were reduced to only 83 seconds and 130 seconds, respectively, by the par-
allel programs (using 1024 processors). The more modest precision achieved by the 2-D
program reflects the dramatically higher computational requirement of 2-D quadrature,
which often requires millions of function evaluations to achieve even 100-digit accuracy.
Our parallel programs achieved very high scalability figures—807 times overall speedup
on a 1024-processor system for the 1-D problem suite, and 627 times overall speedup for
the 2-D problem suite.

One can also consider performing 3-D quadrature with this same approach. The
challenge here is that once again the number of required function evaluations is multiplied
by a large factor. Thus it appears that high-precision (100-digit or higher) 3-D quadrature
calculations are not likely to be feasible in reasonable run time in the near future, except
for some well-behaved cases (or in cases where one or both of the inner integrals can be
evaluated analytically). But 3-D quadrature is possible, using this approach, for ordinary
16-digit IEEE machine precision, or 32-digit “double-double” arithmetic, which can easily
be implemented on IEEE-compliant systems [8].
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